Deuteration for Neutron scattering – DEUNET workshop, Oxford 15-17 May 2017


We are pleased to announce the Deuteration for Neutron Scattering – DEUNET workshop, organised jointly by the STFC Deuteration facility and the DEUNET European Deuteration Network which will be held at the Oxford Spires Hotel, Oxford, UK 15-17th of May 2017.

Deuteration benefits neutron scattering investigations of many types of soft and biological material ranging from macromolecular structures to energy material function. The workshop aims to demonstrate the impact of deuterium-labelling in neutron science, and to establish applications in which this technique will play a key role in generating the greatest future scientific potential. The workshop will consist of a series of scientific presentations on the state-of-the art applications of neutron scattering and deuterium labelling and updates on the current capabilities of deuteration facilities in Europe and around the world. Extensive interactions between the delegates will be facilitate by dedicated discussion sessions in addition to a poster session.

Detailed information, including a preliminary program and list of confirmed speakers can be found at:

Registration is now open and limited to 60 participants. Abstracts for posters are welcome until the 2nd April 2017.

We hope to see you in Oxford!

The organising committee:

Peixun Li, Marek Jura, John Webster STFC
Giovanna Fragneto ILL
Jürgen Allgaier FZJ
Hanna Wacklin ESS

Deuteration User Survey


Within the SINE2020 project we have setup an European Deuteration Network (DEUNET) that aims to increase the availability and accessibility of complex deuterated molecules to the European neutron scattering community. The existing capabilities of the laboratories at ISIS, ILL and FZJ which currently produce deuterated materials for neutron scattering will be complemented by an additional laboratory at ESS. Furthermore, the organisation of the facilities into a network leverages the unique specialisations of each of the laboratories.

Under this project we have prepared a short user survey to help us to get a better overview of your demands for deuterated materials. We hope you will participate in this survey.

Thank you for your help,

WP5: Chemical Deuteration Meeting Held at ILL, Grenoble


Attendees (left-right): Peixun Li (ISIS), John Webster (ISIS), Kun Ma (ISIS), Marek Jura (ISIS), Jürgen Allgaier (FZJ), Hanna Wacklin (ESS), Robin Delhom (ILL), Giovanna Fragneto (ILL), Andreas Raba (FZJ), Anna Leung (ESS), Rachel Morrison (ILL).

January, 2017: A two-day SINE2020 Work Package 5: Chemical Deuteration meeting was recently hosted by the Institut Laue-Langevin (ILL) in Grenoble, France. The event was well-attended, with all of those from ISIS, ILL, FZJ and ESS involved in the Chemical Deuteration project joining the meeting.

Reports from each of the facilities, detailing progress made towards their projects and deliverable objectives, opened the meeting on 18th January. More information about the projects being undertaken by the Deuteration Network can be found here. Kun Ma, who recently joined the ISIS Deuteration Facility, was welcomed to the network.

Subsequent sessions were allocated to the discussion of a collaborative User Workshop for chemical deuteration, to be hosted by ISIS in Oxford, UK in May 2017; methods to survey the requirements of the neutron scattering community for deuterated chemicals; and strategies to ensure the sustainability of the Deuteration Network into the future.

Thank you to Rachel Morrison for orchestrating a very successful meeting, and for all members of the network for their attendance and enthusiastic contribution!


First Deuterated Molecule Produced at the Chemical Deuteration Lab, ESS

The chemical deuteration laboratory at ESS recently produced its first chemically deuterated molecule, sodium pyruvate-d3. It was produced by reacting pyruvic acid with deuterium oxide (D2O) and sodium bicarbonate:


Sodium pyruvate-d3 was analysed by nuclear magnetic resonance (NMR) spectroscopy to determine the identity and purity of the molecule, and to quantify the deuteration at each carbon atom. From the 13C NMR spectrum, it was observed that the sample was highly deuterated, and that the integrity of the sample was maintained.


13C NMR spectrum showing a pattern indicative of deuteration at a carbon atom (25 ppm).

The high deuteration level was confirmed by mass spectrometry, with a peak observed at the value expected (90.0 atomic mass units).

mass spec.png

Mass spectrum showing the a signal at the expected atomic mass for pyruvate-d3 (90.0 amu), shifted by three atomic mass units from pyruvate (87.0 amu), which is consistent with the exchange of three 1H atoms for three 2H atoms.

The pyruvate ion (CH3COCOO) plays an important biochemical role, providing energy to cell via a series of chemical reactions known as the Krebs cycle. It is also a substrate for the lactate dehydrogenase enzyme, from which lactic acid is produced during normal metabolism and exercise. For the chemical deuteration laboratory, sodium pyruvate-d3 will serve as a precursor to deuterated lactic acid-d4. Lactic acid-d4 is a chiral molecule and so exists in two forms, D-lactic acid-d4 and L-lactic acid-d4; the use of an enzyme to produce lactic acid-d4 from sodium pyruvate-d3 will allow us to produce one or the other, instead of a mixture of both which would have to be separated.